45 research outputs found

    Salient Local 3D Features for 3D Shape Retrieval

    Full text link
    In this paper we describe a new formulation for the 3D salient local features based on the voxel grid inspired by the Scale Invariant Feature Transform (SIFT). We use it to identify the salient keypoints (invariant points) on a 3D voxelized model and calculate invariant 3D local feature descriptors at these keypoints. We then use the bag of words approach on the 3D local features to represent the 3D models for shape retrieval. The advantages of the method are that it can be applied to rigid as well as to articulated and deformable 3D models. Finally, this approach is applied for 3D Shape Retrieval on the McGill articulated shape benchmark and then the retrieval results are presented and compared to other methods.Comment: Three-Dimensional Imaging, Interaction, and Measurement. Edited by Beraldin, J. Angelo; Cheok, Geraldine S.; McCarthy, Michael B.; Neuschaefer-Rube, Ulrich; Baskurt, Atilla M.; McDowall, Ian E.; Dolinsky, Margaret. Proceedings of the SPIE, Volume 7864, pp. 78640S-78640S-8 (2011). Conference Location: San Francisco Airport, California, USA ISBN: 9780819484017 Date: 10 March 201

    Retrieval and Clustering from a 3D Human Database based on Body and Head Shape

    Full text link
    In this paper, we describe a framework for similarity based retrieval and clustering from a 3D human database. Our technique is based on both body and head shape representation and the retrieval is based on similarity of both of them. The 3D human database used in our study is the CAESAR anthropometric database which contains approximately 5000 bodies. We have developed a web-based interface for specifying the queries to interact with the retrieval system. Our approach performs the similarity based retrieval in a reasonable amount of time and is a practical approach.Comment: Published in Proceedings of the 2006 Digital Human Modeling for Design and Engineering Conference, July 2006, Lyon, FRANCE, Session: Advanced Size/Shape Analysis Paper Number: 2006-01-2355 http://papers.sae.org/2006-01-235

    View subspaces for indexing and retrieval of 3D models

    Full text link
    View-based indexing schemes for 3D object retrieval are gaining popularity since they provide good retrieval results. These schemes are coherent with the theory that humans recognize objects based on their 2D appearances. The viewbased techniques also allow users to search with various queries such as binary images, range images and even 2D sketches. The previous view-based techniques use classical 2D shape descriptors such as Fourier invariants, Zernike moments, Scale Invariant Feature Transform-based local features and 2D Digital Fourier Transform coefficients. These methods describe each object independent of others. In this work, we explore data driven subspace models, such as Principal Component Analysis, Independent Component Analysis and Nonnegative Matrix Factorization to describe the shape information of the views. We treat the depth images obtained from various points of the view sphere as 2D intensity images and train a subspace to extract the inherent structure of the views within a database. We also show the benefit of categorizing shapes according to their eigenvalue spread. Both the shape categorization and data-driven feature set conjectures are tested on the PSB database and compared with the competitor view-based 3D shape retrieval algorithmsComment: Three-Dimensional Image Processing (3DIP) and Applications (Proceedings Volume) Proceedings of SPIE Volume: 7526 Editor(s): Atilla M. Baskurt ISBN: 9780819479198 Date: 2 February 201

    Face Recognition using 3D Facial Shape and Color Map Information: Comparison and Combination

    Full text link
    In this paper, we investigate the use of 3D surface geometry for face recognition and compare it to one based on color map information. The 3D surface and color map data are from the CAESAR anthropometric database. We find that the recognition performance is not very different between 3D surface and color map information using a principal component analysis algorithm. We also discuss the different techniques for the combination of the 3D surface and color map information for multi-modal recognition by using different fusion approaches and show that there is significant improvement in results. The effectiveness of various techniques is compared and evaluated on a dataset with 200 subjects in two different positions.Comment: Proceedings of SPIE Vol. 5404 Biometric Technology for Human Identification, Anil K. Jain; Nalini K. Ratha, Editors, pp.351-361, ISBN: 9780819453273 Date: 25 August 200

    An overview on the evaluated video retrieval tasks at TRECVID 2022

    Full text link
    The TREC Video Retrieval Evaluation (TRECVID) is a TREC-style video analysis and retrieval evaluation with the goal of promoting progress in research and development of content-based exploitation and retrieval of information from digital video via open, tasks-based evaluation supported by metrology. Over the last twenty-one years this effort has yielded a better understanding of how systems can effectively accomplish such processing and how one can reliably benchmark their performance. TRECVID has been funded by NIST (National Institute of Standards and Technology) and other US government agencies. In addition, many organizations and individuals worldwide contribute significant time and effort. TRECVID 2022 planned for the following six tasks: Ad-hoc video search, Video to text captioning, Disaster scene description and indexing, Activity in extended videos, deep video understanding, and movie summarization. In total, 35 teams from various research organizations worldwide signed up to join the evaluation campaign this year. This paper introduces the tasks, datasets used, evaluation frameworks and metrics, as well as a high-level results overview.Comment: arXiv admin note: substantial text overlap with arXiv:2104.13473, arXiv:2009.0998
    corecore